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Approximate Solutions for Certain Optimal Stopping Problems

BY
A. John Petkau ’3

1. INTRODUCTION ﬁ

ACCESS & tar
NTiS . .

The following optimal stopping problem (which is one of several
different problems which have come to be known as the one-armed bandit
problem) has arisen both in the study of.a sequential sampling inspection
plan by Chernoff and Ray (1965) and in the study of a sequential model
for clinical trials by Chernoff (1967) as well as in connection with

problems involving the sequential estimation of the common mean of two

" normal populations considered by Mallik (1971) and Chernoff (1971):

Let X(t) be a Wiener process described by E[dX(t)] = pdt and
var[dx(t)] = ozdt where 02 is presumed known. One is permitted to
stop observing the process X(t) at any time t, 0 < t < N, and receive
a payoff X(t). The unknown parameter u is assumed to have a

N(uo,og) prior. What is the optimal stopping procedure?

It is easy to verify that the posterior distribution of u given

X(t'), 0<t'<t, is N(¥Y*(s*),s*) where .
“o°82 + X862
YW iEh) & e (1.1)
g + to
and
s* = ‘082 % ! (1.2)

2 2,1

+ No 9) . Furthermore,

b -
* * * =
Here s varies from 80 = oo to sl (oo




the process Y*(s*) is a Wiener process (in the -s* scale) described
by E[dY*(s*)] = 0 and Var[dY*(s*)] = -ds*, starting from Y*(sa) =¥, -
The loss upon stopping at (Y*(s*),s*) is -X(t) which from (1.1) is

a linear function of -Y*(s*)/s* . Applying the transformation s = s*/si P

Y(s) = Y*'(s")/s"*]'/2 leads to a normalized version of this stopping problem
where s varies from s; = 03(082 + 9074 to s, =1 and in which the
stopping cost is given by d(y,s) defined by

d(y,s) = ~-y/s (1.3)

for s > 1 with stopping enforced at s =1 .
This normalized problem is a special case of the following optimal

stopping problem: Given a Wiener process {Y(s), s > 51} in the -s

scale described by E[dY(s)] = 0 and Var([dy(s)] -ds and starting at

Y(so) = Yo + find the stopping time S to minimize E[d(Y(S),s)] . If

we define p(yo,so) = inf b(yo,so) where b(yo,so) is the risk associated

with a particular stopping time and the infimum is taken over all such

stopping times, p(y,s) represents the best that can be achieved once

(y,s) has been reached, irrespective of how it was reached. An optimal
procedure is then described by the continuation set C = {(y,s): p(y,s) < d(y,s)}.
Chernoff (1968) has demonstrated that one should expect the solution (p,C)

of the stopping prcblem to be a solution of the following free boundary

problem (3C denotes the boundary of the set C():

NI

pyy(y,s) = ps(y.s) for (y,s) e C ,

ply.,s) = d(y,s) for (y.,s) € B 2 (1.4)

py(y,s) = dy(y,s) for (y,s) € aC .




Furthermore, for any such stopping problem, Van Moerbeke (1974) has shown

that one should never stop at points (y,s) at which % dyy(y,s)-ds(y,s) < 0.

Applying this criterion to the normalized version of the stopping

problem described above, hereinafter referred to as the one-armed bandit

problem, one finds that {(y,s): y > 0, s > 1} must be a subset of the
optimal continuation region C . Chernoff and Ray (1965) have shown that
for this problem C can be described as C = {(y,s): y > y(s), s > 1}
and have determined asymptotic expansions for the boundary curve ?(s)

in the regions of large s and s close to 1. The leading terms in

these expansions are given by

-(2s log s)l/2 as s+

L4

y(s)

y(s) -0.64(5-1)]'/2 as s-+1.

The scale z =y/s and t = 1/s is more appropriate for applications
and these expansions are illustrated in this scale in Chernoff and Ray
(1965) . These expansions also appear as the curves 20 and 21 in
Figure C of this paper. 1It is evident from this illustration that these
asymptotic expansions are inadequate as a complete description of the
optimal continuation region. An approximation to the optimal continuation
region is required as a description of the optimal procedure in the region
where the asymptotic expansions are clearly inadequate.

Although it is possible that refined methods of asymptotic analysis
could lead to expansions which would provide an adequate description of

the optimal procedure, the purpose of the present paper is to describe

simple methods which lead to arbitrarily accurate numerical approximations

to the optimal continuation region for the one-armed bandit problem. Although




most of the discussion in the present paper will concentrate on the one-

armed bandit problem, these same methods could be applied with equal

facility to any optimal stopping problem'of the general form described

above.

2. APPROXIMATE SOLUTIONS

In this section we indicate how appfoximate solutions to the one-
armed bandit problem can be obtained by replacing the problem for the
Wiener process Y(s) by an analogous problem for a discrete-time
discrete-step process which we will denote by Y'(s') .

Consider the process Y'(s') which starts at Y'(l+n<d) = y' and

1/2

is defined by Y'(s'-A) = Y'(s') £ A each with probability g . This

2
process is observed for at most n successive times and the cost associated
with stopping the process at any point (y',s') is given by d(y',s')
defined by (1.3). The problem is to find a stopping time to minimize the

expected loss. We shall denote the optimal expected loss by p'(y',s').

For this problem, a backward induction algorithm becomes

o' (y',1+4n+4) = min{d(y',1+n+4), %[p'(y'-ﬂll/z,h(n-l)'m
: (2.1)

+ o' (y'-8Y2, 14 (n-1)+0) ]}

for n>1 with p'(y',1) = d(y',1) . Using the methods of Chernoff and
Petkau (1976), it is easy to verify that for this problem the optimal
stopping set can be described as {(y',l+n<a): y' §.§n(A), n > 1} where

for each fixed value of A4 , {;n(A): n=1,2,...} is a non-increasing




non-positive sequence. Note that this set does not depend upon the
initial point. Further note that direct application of (2.1) yields
y,(8) = 0.

Since Y'(s') is a process of independent increments with mean zero
and variance one per unit change in -s', any stopping problem for the
Wiener process Y(s) of the previous section can be imitated by the use
of a small value of A in the Y'(s') process. As A approaches zero,
the solution of the analogous discrete problem would be expected to
converge to the solution cof the Wiener process problem. In particular,

for the one-armed bandit problem this leads to the initial approximation
y(l+n+a) = §n(A) (2.2)

where y(l+n*A) denotes the optimal boundary for the one-armed bandit
problem evaluated at s = l+n°A .

It remains to evaluate the sequence {§n(A)} . Consider the Y'(s')

process defined as above on the grid of points {(y',s'): s' = l+n-4,

y'=c+ k-Al/z; n=20,1,2,...,k=0, + 1, $#2,...} . Note that the grid
is completely specified by the parameter c¢ (for convenience, assume

0<ccx< Al/z)-

Examination of (2.1) with the particular form of d(y,s)
given in (1.3) reveals that for any given choice of A, if the points
{(y',1+n*d): y' < y*} are stopping points then so are the points
UTAHMD%hy'iW%U%. This observation, together with the
fact that the sequence {;n(A)} is non-increasing, implies that when
using the backward induction algorithm (2.1) to classify the grid points
as either stopping or continuation points, the comparisons implied by

(2.1) need be carried out at only a sinéle value of y' for each fixed

value of s' . The algorithm (2.1) cannow be easily implemented in a

el e St S N A T I




direct fashion.

Due to the special nature of the one-armed bandit problem, namely
the fact that all points (y,s) with y'> 0 and s > 1 are continuation
points, one might expect to be able to improve somewhat upon the naive

approach outlined above. Consider a particular path of the Y'(s')

process originating at the point (y',s') = (c+2-A1/2, l+n+Ad) . The

1/2

path of the Y'(s') process could hit the line y' = c+A for the

first time at s' = 1+(n-1)°+A,1l+(n-3)*A,**°. Alternately, the path

could remain above the line y' ='c+Al/2 all the way to s' =1 .

1/2

Noting that the points (c+A » S') are continuation points for all

s' > 1 (since §1(A) = 0 and the sequence §n(A) is non-increasing)

leads to the relation

n

pt(c+2:8M2,14n08) = | p ot (c+aZ, 14 (n-m) +0)
m=1

n+l
+ [ q  dalcrtesn)at/?
k=1 ™

1)

where Pp is the probability that an ordinary random walk starting at
0 first passes through 1 at time m and qn,k is the probability
that an ordinary random walk starting at 0 stays above -1 until time
n and achieves level k-1 at time n . From Feller (1968, p. 89,

Theorem 2) one finds

pm = 0 for m even ,
& (2.4)
1 -m .
% B «2 for m odd .




In addition we have the recursive relation P, = -0 P with P, = %

2 m+3

k and P, = 0 . From Feller (1968, p. 73, Ballot Theorem) one also finds
i q = 0 for n even and k odd ,
E n,k

= 0 for n odd and k even , (2.5)

E n+l o
o e L 2 ?therWISG
2

The relation (2.3) provides a modified method of carrying out the

backward induction which we shall call the truncation method: At s' =1,

the risks are specified by d(y,s) . At any stage s' = l+n*A , compute
the risk at y' = c+2-A1/2 by means of (2.3). The risks at the levels
y' = c+k~A1/2 for k=1,0,-1,-2,... are computed using the algorithm
(2.1) in the fashion described above.

Returning for a moment to the one-armed bandit problem, it is well-
known (and obvious from (1.4)) that changing the stopping cost function
d(y,s) by adding to it any solution of the heat equation leaves the
optimal continuation region unchanged. For the present purposes, it is

convenient to consider the new stopping cost function do(y,s) defined

by do(y,s) = d(y,s) + y, that is,
dylyss) =y - y/s (2.6)

for s > 1 with stopping enforced at s = 1 . Note that do(y,l) 20 .
Denoting the corresponding optimal risk -by pé(y,s) , the algorithm (2.1)

becomes

e ————————l]
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1/

po(y',1+n"4) = minfd (y',1+n-1), %[oé(y'+A 2 e tn-13a)

(2.7)
- pa(y‘-A1/2,1+(n-1)'A)]}

for n>1 with pa(y',l) = 0 . Further, the relation (2.3) becomes

I B (2.8)

n
po(c+2:8t/%,14ne) = ) P, 0y (cHd
m=1 :

This reduces the computation involved in carrying out the truncation

method.

To this point we have simply described the direct and truncation
methods of carrying out the backward induction algorithm for the Y'(s')
process when the motion of the process is restricted to a grid specified
by a particular value of the parameter c .

It should be emphasized that carrying out the backward induction
algorithm for a particular grid simply classifies all the grid points
as either stopping or continuation points. The sequence {?n(A)} itself
is nut determined. At each fixed value of s' = l+n*A , the algorithm

simply determines the two adjacent grid points between which the number

QH(A) must lie; that is, the algorithm determines the value of

k (= k(n,A,c)) such that

c+ ka2 <y ) < e+ enal/? .

However, implementing the algorithm for different grids all with the

same fixed value of A but specified bﬁ a sequence of values of the
/2

parameter c¢ between O and Al

allows the sequence {Qn(A)} to be




i ]
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computations for the one-armed bandit problem are described.

determined to within any desired degree of accuracy. This will be

indicated in more detail in the next section where the appropriate

To this point we have presented simple methods of obtaining

heuristic initial approximations to the solutions of optimal stopping

probléms for a zero drift standard Wiener process. These methods involve
replacing the Wiener process problem by an analogous discrete problem
involving dichotomous random variables. The relation of the solution

of any such Wiener process problem to the solutions of an entire class of
analogous discrete problems is considered in Chernoff and Petkau (1976).
A particular result of that paper is the following simple approximate
relation between the optimal boundary of any such Wiener process problem
and the optimal boundary of the corresponding analogous discrete problem

for the Y'(s') process described in the previous section:

¥(14n+8) = §_(8) % 0.5 R (2.9)

(the sign being determined so as to make the continuation region for the
Wiener process problem larger). For the one-armed bandit problem, this
leads to the following refinement of (2.2)

§(14ne8) = § (&) - 0.5 i (2.10)




This refinement takes the form of a "correction for continuity",
the solution of the analogous discrete problem being corrected in order
to obtain (approximately) the solution of the Wiener process problem.
The behavior of the approximations (2.2) and (2.10) will be examined

in the next section.

3. APPLICATIONS

To illustrate the accuracy of these approximations, it would be
desirable to evaluate these approximations in a Wiener process problem
for which the exact solution is known. A normalized version of a
gambling problem discussed in Van Moerbeke (1374) is the following:
Suppose {X(s); 0 < s :_l} is a zero drift standard Wiener process and
that a gambler wins money at a constant rate whenever the process
occupies the positive x half-plane and loses money at the same
constant rate whenever the process occupies the negative x half-plane.
If the gambler is permitted to stop the process at any time s , 0 <s <1,
what is the gambler's optimal strategy?

This problem can be formulated as an optimal stopping problem by

defining the reward g(x,s) for stopping the process at the point (x,s) d
to be
2 5
g(x,s) =1-s + 2x for x>0,
=1-5s for x <0,

the problem being to find a stopping time that maximizes the expected
reward. Van Moerbeke (1974) proves that the optimal continuation region

for this problem can be described as {(x,s): x > x(s), 0 <s < 1}

‘4—1---------I-IllIlllIIIIIIIIIIIII-IIIIIIII.‘
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/2

- 1 : .
where x(s) = -a(l-s) and o is the solution of the simple equation

2 :
IQ exp[Aa=A"/2]dA = 1 which can easily be determined to be
0

=]
.

a = 0.5061. Modifying the reward function to be g(x,s) = g(x,s)-2[x2+l-s]

does not change the solution of this problem and it is easily seen that

the methods of the previous section are directly applicable (in particular,
g(x,1) =0 for x > 0) .

This Wiener process problem has been approximated by three different
analogous discrete problems, those corresponding to A = 0.01, 0.0025
and 0.000625. For each fixed value of A the computations were carried

out for all grids specified by values of the parameter c¢ varying from
1/2

0 to A in steps of 0.001 . Thus each individual member of each of

three sequences {in(d)} is located to within an error of 0.00l1. 1In
addition the corrected sequences {;;(A)} defined by i;(A) = i“(A)—O.SAl/2

were evaluated. These six approximating sequences and the exact solution

X are illustrated in Figure A in the (x,s) scale. Here il = {in(0.0I)},
x, = {xn(0.0025)}, ¥ = {xn(o.oooszs)} and similarly X = {x;(0.0l)} ’
;(*= =

{Q;(o.oozS)}, i; {i;(0.000GZS)} . This figure clearly illustrates

2

that for this particular problem whereas the approximations provided by

~

Xy iz and §3 are quite crude, the approximations provided by X*, x*

1 2
and i*, particularly both x* and i*, are exceptionally accurate,
3 2 3

being virtually indistinguishable from each other and from the exact

solution. The fact that ii is not too accurate reflects the fact that

when using these approximations, one must begin with a reasonably small 4§

value of A . 1Indeed if we note that §I results from correcting the

boundary il which is obtained by apprbximating the Wiener process on the




-]2-

interval [0,1] by a simple random walk involving only 100 time steps,

it is somewhat amazing that ii achieves the accuracy that it does.

Figure A

The exceptional performance of the refined approximation (2.9) in
Van Moerbeke's problem leads us to hope that the same type of behavior
will occur in the one-armed bandit problem. In order to examine this
possibility, the one-~armed bandit problem was approximated by three
different analogous discrete problems, those corresponding to A = 1.0,
0.25 and 0.0625. For each fixed value of A the computations were
carried out for the region 1 < s < 100 and for all grids specified by

172

values of the parameter c¢ varying from O to A in steps of 0.01.

Thus each individual member of each of the three sequences {§n(A)} is
located to within an error of 0.01, In addition the corrected sequences

1/2

{§;(A)} defined by §;(A) = §n(A)-0.5A were evaluated. These six

approximating sequences are illustrated in Figure B. Here §1 = {§n(1.0)).

y, = {y,(0.29)}, Y5 {§n(o.0625)} and similarly y$ = {y*(1.0)},

§5 = {§;(0.25)}, §5 {9;(0.0625)}. This figure clearly indicates that
for the one-armed bandit problem the approximations provided by 91, 95
and y; are exceptionally accurate, these curves being indistinguishable

from one another.

Figure B

As pointed out in the introduction, for applications of the solution

of the one-armed bandit problem, the (z,t) scale where 2z = y/s and

M



=13 »

t = 1/s is more appropriate. 1In order to obtain an accurate approximation
to the optimal stopping boundary in the (z,t) scale in as efficient a
manner as possible, the computations were carried out as follows:

Beginning with a very small value of A, the boundary was approximated in
a small interval of s in the manner described above. Successively

larger values of A were then employed to approximate the boundary in
successively larger intervals of s . These approximations to the optimal
boundary, determined in overlapping intervals c¢f s , were then superimposed
to obtain the final approximation to the optimal boundary. Since the
values of A used were chosen in such a way as to yield the desired
accuracy, only the value c = 0 was usea in these computations. The
computations were carried out using both the direct and the truncation
method. The truncation method reduced the computation time required by a
factor of approximately two. The resulting approximation to the optimal
stopping boundary is illustrated in Figure C together with the asymptotic
expansions of Chernoff and Ray (1965). Here EO and 51 denote the
boundaries obtained using the asymptotic expansions for t close to 0

(s large) and t «close to 1 (s close to 1) respectively and 2z denotes

the boundary obtained by means of the computations described above.

Figure C

4. DISCUSSION

As indicated in the introduction, the one-armed bandit proble«m has
arisen in a number of statistical applications and consequently considerable

effort has been devoted to obtaining approximations to the optimal stopping

-

=




-14 -

boundary. Chernoff and Ray (1965) first formulated the problem and
were able to derive asymptotic expansions for this boundary. In a later
paper, Chernoff (1967) presents a small @able of this boundary. Although
it is not indicated in the paper, this approximation was obtained by
approximating the Wiener process by a sum of independent normal random
variables and applying a backward induction to the approximating process
(private communication from Herman Chernoff). In carrying out this
backward induction the normal distribution was approximated by a discrete
distribution thus allowing the integrations involved in each stage of the
backward induction algorithm to be replaced by summations. Mallik
(1971) presents a more detailed table of‘this boundary and indicates
without clarification that a refined version of the technique used by
Chernoff was used to obtain his table. Another detailed table appears
in Chernoff (1971 and 1972) and it is in these references that it is
first suggested that the Y'(s') process of Section 2 be used to obtain
an approximation to the optimal boundary for the one-armed bandit problem.
The purpose of the present paper was to describe explicitly how
this approximation could be carried out and to demonstrate that by the
use of the "correction for continuity" given in (2.9) this approximation
could be made exceptionally accurate in an efficient manner. Obtaining
the present approximation to the boundary of the one-armed bandit problem
involved ten separate runs, the i-th run approximating the boundary in the

region s =1 to s =1 + 1550+A, wusing a grid determined by c = 0 and

0-4. 412

i
Ai =] . The entire computation, approximating the boundary in the
region 1 < s < 10,000 required just 36 seconds of computation time on

the IBM 370/168 at UBC. The objective in the present computation was




to obtain an accurate approximation in the (z,t) scale. Detailed
examination of the computer output leads to the empirical estimate that
in the (z,t) scale, for each fixed value of t , the boundary has been
located to within an error of 0.001.

For the one-armed bandit problem it is convenient to think of

a = 1(/51/2 = ){‘*/S‘*l/2 (4.1)

as the number of standard deviations that the current estimate of u

is away from O , and of

B = ¢(a) (4.2)

(¢ denotes the standard normal cumulative) as the significance of the
data for rejecting the hypothesis u = 0 in favor of the alternative
that u < 0 . Note that t = 1/s is the fraction of the total

available information already collected. Then the optimal procedure

can be regarded as stopping as soon as the hypothesis u = 0 is rejected

in favor of the alternative u < 0 at a nominal significance level.

/2

B(t) = o(a(t)) = o(¥(s)/sY?) (4.3)

which varies with t . In variations of the one-armed bandit problem
in which the data is not normally distributed, it seems reasonable to
use this nominal significance level as ; stopping criterion. In order
to facilitate future use of the results of this paper, the optimal

boundaries z(t), a(t) and B(t) are presented in Table 1.
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As indicated in the introduction, these same methods could be
applied with equal facility to any optimal stopping problem of the
general form described there. In Petkay (1977) these methods have
been employed to obtain the optimal continuation region for a stopping
problem in which the optimal continuation region can be described as the

set {(y,s): 91(5) <y«< }2(5), s > 1} where 91(5) # }2(5).

The connection between such optimal stopping problems and free boundary

problems involving the heat equation of the form (1.4) makes it clear that these

same methods could be used to determine numerical solutions of such free
boundary problems. The problem of obtaining numerical solutions to

free boundary problems has received considerable attention in the
literature (see, for example, Sackett (1971) and Meyer (1977)). Whether
the methods proposed here provide a reasonable alternative to these more

general methods is a question that remains to be answered.
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Table 1. One-Armed Bandit Boundary

t z(t) a(t) B(t)

0.0001 ~5.9318 0.0G021
0.0002 -0.0473 ~3.3431 0.0041
0.2603 -0,0559 ~3,2275 C. 00062
0.00C4& -C.0630 ~3,1487 0.00082
0.CLCH -J.0589 -3,0830 0.00102
0.0006  =-0.0742 -3,0285 0.00123
TT0.6CCT -0.0769 -2.9821 0,U0143
0.00C8 -0.0832 -2.9416 0.00163
0.JJ09 -0.0R72 -2.505%9 0.00183
0.001C -0.0909 -2.8731 0.90203
0.0UN20 -0.1187 -2.6547 0.00397

C.003C -0.1381 =2.52017 L R T b s il
T0.0040  -C.1%3% -2.4262 0.00763
0.3050 -0.1661 -2.3486 0.00942
0.00¢&0 -C.1771 -2.26%9 0.01113
0.0CT70 -0. 1866 -2.2338 0.01275
0.0080 -0.1655 -2.1862 0.01440
0.0090 -0.2035 -2.1446 0.01599
""" 0.0100 =0.21067 =2.1073 0.01754
0.020¢C -Ce2b624 -1.8%55% 0.03176
0.0300 -0.2955 -1.7062 0,04398
0.0400 -0.2196 -1.5980 0.05502
0.0500 -0.3385 -1.5138 0.06504
B ~ 0.,0600 -0.3537 -l.4441 0.07436
0.070C -0.3665 -1.38%4% 0.08297
0.08CC -0.3771 -1.3333 0.09121
C.1000 -0.3944 -1.2472 0.10616
0.1200 -0.4C74 -l. 1762 0.11976
w 0.1400 -0.4174 -1.,1155 0,13232
0.16CC -C.4252 -1.0630 0.14390
0.1800 -0.4310 -1.0159 0.15484
0.2000 -0.4354 -0.9735 0.16516
0.25CC -0.4413 -0.8827 0.18871
0.300C -0.4415 -0.8061 0.21008
~0.3500 -0.4378 -0.7400 0.22964
0.400C -0.4308 -0.6812 0.24788
0.50CC -0.4083 -0.5774 0.28184
0.5500 -0.3628 -0.5310 0.291771
0.6000 -0.3764 -0.4860 0.31350

_____________ 0.6500 -0.3560 -0.4416 0.32939 E
0.7000C -0.3333 -0.3983 0.34520
C.750C -0.3074 -0.3549 0.36133
0.8000 -0.2774 -0.3102 0.37621
0.8500 -0.,2423 -0.2628 0.39634
0.8700 -0.2263 -0.2426 C.40417
, 0.8900 -0,2088 -0.2213 0.41243
* 0.9100 -0.1894 -0.1986 0.42130
€.9300 -0.16176 -0.11738 0.43102
0.950C -0.1421 -0.1457 0.44206
0.960C -0.1272 -0.1298 0.44835
~0.9800 -0.0902  -0,0911 0.46369
C.9900 -0.0639 -0.0642 0.47440
1.0000 0.0 0.0 0.50000
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